CHECK: Mathefehler
Um diese Seite nutzen zu können, musst du eingeloggt sein. – Neu hier? Dann registriere dich.
Welche Umformung der binomischen Formel ist richtig?
Korrekt ist: a² + 2·ab + b² = (a + b)²
Siehe auch 1. Binomische Formel.
Welche Addition der Brüche ist richtig?
Zur Berechnung müssen wir einen gemeinsamen Nenner schaffen:
\( \frac{1}{3} + \frac{1}{4} \\ = \frac{1 \textcolor{#00F}{·4} }{3 \textcolor{#00F}{·4} } + \frac{1 \textcolor{#00F}{·3} }{4 \textcolor{#00F}{·3} } \\ = \frac{4}{12} + \frac{3}{12} \\ = \frac{4+3}{12} \\ = \frac{7}{12} \)
Welche Umformung des Bruches ist korrekt?
Korrekt ist, dass beide Terme im Zähler durch den Nenner x dividiert werden:
\( \frac{x-1}{x} = \frac{x}{x} - \frac{1}{x} = x:x - \frac{1}{x} = 1 - \frac{1}{x} \)
Welche der folgenden Termumformungen ist korrekt?
Die Termumformung können wir wie folgt ausschreiben:
-(x2)
= -(x · x)
= (-1)·(x · x)
= (-1)·(x)·(x)
= (-1·x)·(+1·x)
= (-x)·(+x)
= -x2
Setze y = x + 1 ein in den Term 4·y. Welches Ergebnis kommt heraus?
Setzen wir den Term (x + 1) in den anderen Term ein:
4·y = … | y = x + 1
= 4·(x + 1)
= 4·x + 4·1
= 4·x + 4
Welcher Term wurde richtig umgeformt?
Das Minus vor der Klammer kehrt die Vorzeichen der Terme innerhalb der Klammer um. Man kann sich das Minus als Multiplikation mit (-1) vorstellen:
= -(x + y)
= (-1)·(x + y)
= (-1)·x + (-1)·y
= -x + (-y)
Welche Gleichung bzw. Aussage ist korrekt?
Die Division durch Null ist nicht definiert. Also ist 3 : 0 nicht definiert.
Welcher Größenvergleich ist korrekt?
Am Zahlenstrahl können wir gut erkennen, dass die -15 weiter links liegt (links von der 0) und damit kleiner ist als die 0.
Wie lautet die Lösung der Gleichung: x2 = 25?
Korrekt ist x1 = 5 und x2 = -5. Das stellen wir schnell mit der Probe fest:
x2 = 25 | x = 5
52 = 25
5·5 = 25
25 = 25 ✓
x2 = 25 | x = -5
(-5)2 = 25
(-5)·(-5) = 25
25 = 25 ✓
Fortschritt: