Folgende Schritte sind zum Lösen dieser Logarithmusgleichung notwendig:
\( \log_{5} (3·x+5) = 7 \)
1. Wir exponieren beide Seiten mit der Basis des Logarithmus, also 5:
\( \log_{5} (3·x+5) = 7 \quad | \textcolor{#00F}{5}^{\{\}} \\ \textcolor{#00F}{5}^{\log_{5} (3·x+5)} = \textcolor{#00F}{5}^{7} \)
2. Jetzt nutzen wir die Logarithmusregel aloga x = x:
\( 5^{\log_{5} \textcolor{#F00}{(3·x+5)}} = 5^{7} \\ \textcolor{#F00}{(3·x+5)} = 5^{7} \)
3. Abschließend die Gleichung auflösen und den Wert für x bestimmen:
\( 3·x+5 = 5^7 \quad |-5 \\ 3·x = 5^7 - 5 \quad | :3 \\ x = \frac{5^7-5}{3} \\ x = 26040 \)
Die Probe des Ergebnisses:
\( \log_{5} (3·x+5) = 7 \quad | x = 26040 \\ \log_{5} (3·26040+5) = 7 \\ \log_{5} (78125) = 7 \quad \textcolor{#00F}{\text{✓}} \)
Das ist korrekt, da: 57 = 78 125